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Abstract. It ha8 been known for some time that U(n) gauge fields can be represented in terms 
of gradients of complex vectors with sufficiently many components. By using Monte Carlo 
simulations, one may determine how many components are needed for a given gauge group. 
Here we provide numerical evidence that a single three-component complex unit vector gives 
rise to the electromagnetic field and that two oiihononnal five-component complex vectors result 
in U(2). 

1. Introduction 

In the early 1960s Narasimhan and Ramanan [l] showed that every U(n)  gauge field A;(x) 
can be expressed in terms of n orthonormal vectors e&) in the form 

where the matrices tc are the generators of U(n) and the comma indicates partial 
differentiation with respect to xp. The n vectors ea(x)  must have N > n 'complex 
components in general. These vectors may be considered to be the columns of an N x R 
matrix V ( x )  

e i h )  = K&). (7-1 
In terms of this matrix, the gauge field 

can he written as 

Ap(x) = -iVt(x)V,(x). (4) 

This relationship between vectors and gauge fields has been exploited by Corrigan eta[ 
[Z] and hy Atiyah [3] in their studies of classical solutions of the Yang-Mills equations. It 
has also been used by Dubois-Violette and Georgelin [4] as the basis of their formulation 
of gauge theory. 

It is not, in general, known how many components the vectors e, must have in order 
to represent the gauge fields of a given gauge group. In what follows we shall, describe a 
numerical method for determining this minimum number N and shall report the results we 
obtained by applying this method to the~groups U(1) and U(2). We have found that any 
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U(1) gauge field can be represented by the motion of a single threecomponent complex 
unit vector e(x )  and that arbitrary U(2) gauge fields can arise from the motion of two 
orthonormal five-component complex vectors e&). 

We begin our discussion with two examples of the relationship (1) between vectors and 
gauge fields. 
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2. Illustrations 

Our first example is that of a plane wave in electrodynamics. A single moving unit complex 
three-vector e(x)  gives rise to the gauge field 

A,(x) = -ie+(x). e+(x).  (5) 

It is easy to verify that the vector 

with k2 = 0, qo = p o ,  and k . (p - q) = 0 represents a plane wave propagating in the k 
direction. The electric and magnetic fields of the wave are 

E(x) = kO(p - q) sin2.k. x 

B(x) = k x (p - q) sin 2k . x  

(7)  

and 

(8) 

Our second example illustrates how the basic formula (1) can arise in a theory of free 
respectively. 

fermions. It is natural to write a multicomponent Fermi field 

IL= (") 
A 

in terms of orthonormal basis vectors e&) in the coordinate-free form 

with its gauge field A; given by the relation (1). 
A complete gauge theory would include a Lagrange density for the gauge fields 
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where A ,  is the gaugefield matrix (3). The orthonormality of the vectors e, would have 
to be established either %y an economical representation of these vectors or by Lagrange 
multipliers. Finally the measure for the path integral should embody the Jacobian of the 
transformation (1) from the vectors to the gauge fields. 

3. How big is N ? 

Naasimhan and Ramanan [I] have shown that for the gauge group U(n)  in manifolds of 
d dimensions. the required number of rows N for the matrix V ( x )  has the upper bound 

(15) 

(16) 
Dubois-Violette and Georgelin [4] have given a lower bound for the minimum number 

N of rows for the group U(n) .  By counting the independent functions required by the 
gauge field and available in  the components of the matrix V ( x ) ,  they noted that Nloc has 
the lower bound 

N G (d + i ) ~  + 1 ~ .  

N~~~ G (zd + ~ n 3 .  

They also showed that locally the bound on N is smaller, 

N~oc 2 (d + l)n/z. (17) 
For U(1) Dubois-Violette and Georgelin showed that number N of rows of the matrix 

V locally need only  be^ 

NIOC = ttd + 11/21 (18) 
i.e. the least integer not less than (d + l)/Z. In four dimensions, this value of NI,, is 3. 
Our numerical work confirms their result. 

For U@) in four dimensions, their lower bound (17) is 
~~ 

NI% > 5. (19) 
Our work indicates that Nloc = 5 .  ~ 

4. A Monte Carlo technique 

For the purposes of field theory in flat space, it is probably sufficient to know NlOc. This 
integer can be determined for a given unitary group U(n)  by a method inspired by lattice 
gauge theory. One replaces the spacetime continuum by a four-dimensional lattice and puts 
the gauge fields on the links of the lattice and the vectors with Ntesl complex components 
on the vertices of the lattice. 

In each Monte Carlo run, one starts with a random target configuration of gauge fields 
and random initial orthonormal vectors. One allows the vectors to evolve randomly and 
computes at each step the gauge fields generated by the vectors according to a discrete 
version of the relation (I), accepting those changes in the vectors that bring the generated 
gauge fields closer to the target gauge fields. If after many thousands of sweeps through 
the lattice, the difference between the generated and target gauge fields approaches zero 
and~if this behaviour is exhibited in several runs, then one may tentatively conclude that 

' 

NI,, S Nest. 
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5. Our numerical work 

We have carried out numerical experiments that indicate that the motion of a single three- 
component complex unit vector e ( x )  can be interpreted as a U(1) gauge field 

(20) 
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A,(*) = -ie+(x) . e ,p (x )  

A ~ ( x )  = -iuLae!(x). eb,,(x) (21) 

and that the motion of two five-component complex orthonormal vectors e , ( x )  yields the 
U(2)  gauge fields 

in which the 2 x 2 matrices uj  = (1, U )  are the identity matrix and the Pauli matrices a. 
In our experiments we used a periodic spacetime lattice of size lo4 with vectors e,(m) 

on the vertices m of the lattice and gauge fields on the links I of the lattice. 
We began each run with random initial orthonormal vectors et(m) and with random 

target gauge fields A:([) whose values we uniformly distributed over the interval 
[-0.3,0.3]. 

The vectors e,@) generated gauge fields A;(l)  according to the equation 

(22) ALU) = - p 0 e , ( m )  - i c  t . (eb(m + k )  -e&)) 

which is a discrete version of the basic relation (I). Here the link I joins the vertex m to 
the vertex m + f i  which lies one lattice spacing beyond m in the p th  direction. We allowed 
the vectors to evolve randomly and selected those mutations that lowered the sum D of the 
squares of the differences 

D = C(dE(1) -Ai(!))*. (23) 

For the case of U(1), we made two long runs in which the unit vectors had three 
complex components. In the first run, the initial value of D was 1208. After 20000 sweeps 
through the lattice, the final value of the difference D was 0.001 37. In the second run, 
the initial value of D was 1196. After 20000 sweeps through the lattice, the final value 
of the difference D was 0.001 40. We conclude that an arbitrary U(1) gauge field can be 
described by the motion of a single three-component complex unit vector e ( x ) .  

For the case of LT(2), we made two long runs in which the orthonormal vectors had 
five complex components. In the first run, the initial value of D was 4788. After 200000 
sweeps through the lattice, the final value of the difference D was 0.2685. In the second 
run, the initial value of D was 4790. After 200000 sweeps through the lattice, the value 
of the difference D was 0.2709; after 300000 sweeps, it was 0.1605; and after 400000 
sweeps, it was 0.1122. We conclude that an arbitrary U(2) gauge field can be described by 
the motion of two orthonormal fivecomponent complex vectors e , (x) .  

It is easy to explain why the (/(I) vector converges much faster than the U ( 2 )  vectors. 
For U(1) the gauge field has four independent functions, while the unit complex three- 
vector e(x)  has five. But for U(2)  both the gauge fields and the two orthonormal complex 
five-vectors have 16 independent functions. Thus the fit is loose for U(1) and tight for 
U(2). 
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